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The features of first passage time density function is analysed theoretically in a
symmetric double square well system modulated periodically with a signal of
arbitrary amplitude and frequency. Resonance is demonstrated as a maximum
synchronization between periodic signal and noise. Resonance is characterized
as a linear relation between noise strength at resonance and frequency. This
characterization is shown to hold good for amplitude lesser or greater than
the depth of the unmodulated potential well. The mean first passage time of the
process at resonance is also shown to decrease linearly with the strength of the
noise for high amplitude of the signal while it increases linearly with inverse of
the noise strength for low amplitude.

KEY WORDS: Synchronization; stochastic resonance; first passage time density
functions.

1. INTRODUCTION

There has been a great deal of interest in the understanding of mechanism
of interplay between random noise and a deterministic periodic signal.
It has been found that they act cooperatively in some nonlinear systems.
The enhancement of the output signal power caused by injection of an
optimal amount of noise into a periodically driven bistable system, com-
monly refered to as stochastic resonance (SR) is considered to be as one of
the most puzzling and promising cooperative effects.

The phenomenon was first proposed (1) to explain the periodicity of the
ice age by modelling the climate system as simple bistable system where
each metastable state is characterized by a typical temperature. The result
of the cooperative interaction of climatic fluctuation and the weak periodic



modulation caused by the slowly varying eccentricity of the earth is
proposed to be the reason of periodic occurance of ice ages. The first
realization of SR in a laboratory experiment was provided in an electronic
Schmitt trigger, (2) where the circuit behaves approximately like an idealized
two-state system. It was, however, only during the past decade that SR
became the subject of extended investigation, mainly devoted to theoretical
studies or numerical and analog simulations. SR (3) has been demonstrated
in diverse systems including sensory neurons, mammalian neuronal tissue,
lasers, SQUIDs, tunnel diodes and communication devices.

Characterization of SR is usually done in the following ways. Some
authors(4–7, 11) described this as non-monotonous behavior of power spectrum,
the signal to noise ratio, the Fourier amplitude of the periodic component
of the process, while some others (12–17) observed the non-monotonous beha-
viour of features of the residence time distribution, as a function of the noise
strength or frequency of the periodic signal.

From the theoretical point of view most of the workers assumed that
either the amplitude or frequency of the periodic signal is small. This
results to either linear response theory or adiabatic approximation of the
process. However, some attempts have been made to remove the above
restrictions on frequency either by evaluating the next order of the adiaba-
tic approximation (8) or by considering the bistable system in the weak noise
limit. (9, 10) Recently, some interesting attempt has been made to remove the
restriction on frequency and noise strength by modelling the bistable
system as double square well. (11) This theoretical analysis (11) demonstrates
the non-monotonic dependence of the signal to noise ratio as a function of
noise strength and frequency of the periodic signal with the assumption of
small amplitude of the signal.

On the other hand, some workers (13, 15, 16) simulate the continuous
stochastic process into a stochastic point process with the help of an analog
circuit and measure the strength of the first few peaks of the residence time
distribution. They observe that the residence time distribution peaks at
Tn=(n−1/2) T0 with n=1, 2,... and T0 being the period of the signal.
Further, when strength of the first peak is plotted as a function of the
frequency of the signal keeping noise strength constant, it hits a maximum
for that period which is equal to twice of the inverse of the Kramers rate
for the unbiased process at that particular noise strength. This phenome-
nological feature is reaffirmed recently (17) by numerical simulation of a
simple two-state model, namely, periodically modulated symmetric Schmitt
trigger with Gaussian noise.

In this paper we focus our attention on features of first passage time
density function (FPTDF) theoretically and propose a suitable characteriza-
tion of this cooperative phenomena without any restriction to amplitude
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or frequency of the periodic signal. This characterization confirms our
previous analytical results (18) for low amplitude of the signal.

Bistable systems used as switches are a fundamental component of
electronic and optical devices. We are concerned about the response of a
bistable system embedded in a noisy environment under the influence of a
periodic field. The simplest model (19, 20) for the two-state spatially extended
symmetric system is to consider a particle moving in the symmetric double
square well potential V(x) under the influence of white noise. The potential
V(x) is shown in Fig. 1. The influence of the external periodic field is
usually described by the modulation of the potential well in the following
fashion. The potential at any instant of time t for the left state is replaced
by −|V0 |+A sin Wt and that for the right state is replaced by −|V0 |
−A sin Wt with A, W being the amplitude and frequency of the periodic
signal and |V0 | is the barrier height when there is no modulation. To treat
the problem analytically we, in particular resort to this simple model.

2. FORMULATION OF THE PROBLEM

The Fokker–Planck equation (FPE) for the probability density func-
tion p(x, t) for position x of the particle at time t for this process is

“p(x, t)
“t

=−
“s(x, t)
“x

, (1a)

s(x, t)=−D exp[−V(x, t)/D]
“

“x
[exp{V(x, t)/D} p(x, t)], (1b)

where D is strength of the white noise. It is clear that for the potential in
Fig. 1, “V

“x=0 everywhere except at the discontinuous points. Therefore in
each region of V(x, t)=constant, the FPE Eq. (1) reduces to simple diffu-
sion equation. The solutions in each region are to be matched with the
continuity of probability current and jump conditions at the discontinuous
points [−ka/2, ka/2] at each time. These conditions are to be supple-
mented by the reflecting boundary conditions at the walls [−a(1+k/2),
a(1+k/2)]. The problem thus reduces to finding a solution of the Fokker–
Planck equation with time-dependent boundary conditions. This particular
feature makes the problem interesting too because no standard method to
handle such problem is available in the literature.

In this paper we, however, are interested in first passage time density
function (FPTDF) with mean first passage time (MFPT) being a important
parameter of the process. To be specific, we concentrate on the events start-
ing from x=xi=−xf and ending at x=xf. As the potential is symmetric,
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Fig. 1. Potential V(x, t) at time t as a function of x.

the MFPT Ot(−xf Q xf)P would be same as Ot(xf Q −xf)P. The condi-
tions that the required solution of Eq. (1) satisfies are:

pŒ(−a(1+k/2), t)=0, (2a)

e[−|V0|+A sin Wt]/Dp(−ka/2−0, t)=p(−ka/2+0, t), (2b)

pŒ(−ka/2−0, t)=pŒ(−ka/2+0, t), (2c)

p(ka/2−0, t)=e[−|V0|−A sin Wt]/Dp(ka/2+0, t), (2d)

pŒ(ka/2−0, t)=pŒ(ka/2+0, t), (2e)

p(xf, t)=0, (2f )

where prime over p in the above equations denote derivative with respect
to x. Equation (2a) corresponds to reflecting boundary condition for the
wall at x=−a(1+k/2). As limdQ 0 > ±ka/2+d±ka/2−d e

V/Ds(x, t) dx vanishes, we obtain
the jump conditions Eqs. (2b) and (2d) at the discontinuous points x=
±ka/2. Noting that limdQ 0 > ±ka/2+d±ka/2−d

“s
“x dx=−limdQ 0

“

“t > ±ka/2+d±ka/2−d p(x, t) dx,
and assuming that the probability to find a particle in the interval 2d goes
to zero for dQ 0, the matching condition Eqs. (2c) and (2e) for continuity
of probability current at the discontinuous points x=±ka/2 are obtained.
Equation (2f ) is the absorbing boundary condition at x=xf for the
process considered.

No analytic solution exists for Eq. (1) with the boundary conditions
given by Eq. (2). We thus introduce a scheme to approximate the force
sin Wt as a multi-step periodic signal. (21)
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The construction of multi-step periodic signal is as follows. We divide
the half cycle of the signal by (2p+1) intervals so that each interval in the
horizontal t-axis is of size (gt/(2p+1)) with Wgt=p. We define (2p+1)
numbers sk along the vertical axis as

sk=

5sin kp
2p+1

+sin
(k−1) p
2p+1
6

2
; k=1, 2,..., p (3a)

sp+1=1 (3b)

sp+1+r=sp+1−r; r=1, 2,..., p. (3c)

Each number sk is associated with the interval (k−1)gt2p+1 < t [ kgt
2p+1 with

k=1, 2,..., (2p+1). Equation (3) clearly shows that

0 < s1 < s2 < · · · < sp < sp+1=1 > sp+2 > sp+3 > · · · > s2p+1 > 0. (4)

Equation (4) states that in order to reach the maximum value (=1) of the
signal from the zero level we have to have (p+1) step up and from the
maximum to the zero level we have (p+1) step down. This is for the posi-
tive half-cycle. For the negative half-cycle similar constructions have been
done with the replacement sk Q −sk, -k and each number −sk is asso-
ciated with the interval gt[1+ k−1

2p+1] < t [gt[1+ k
2p+1] with k=1, 2,...,

(2p+1). This aproximation for the full one cycle of the sinusoidal signal
(as shown in Fig. 2) is then repeated for the next successive cycles.

One may, however, note that the W which we have defined for this
approximated signal is not the same as that of sinusoidal signal, because
the Fourier transform of sinusoidal signal would give only one frequency
while this approximated signal in the Fourier space corresponds to many
sinusoidal frequencies, especially because of its sharp discontinuities. Yet
we urge this approximation because in each small interval the boundary
conditions become time-independent. Further, we can choose the infinite-
simal time interval as small as we please by increasing the number of steps
of multi-step periodic signal.

In the future development the index i will refer to the cycle number.
With the help of multi-step periodic signal in each small time interval the
conditional probability density function p(x, t | xŒ, tŒ) could be expressed as

p(x, t | xŒ, tŒ)=C
n
kn(x) kn(xŒ) exp[−ln(t− tŒ)], (5)

where kn(x) are the normalised eigenfunctions functions and the correspond-
ing eigenvalues are denoted as ln. Substituting Eq. (5) into Eq. (1) one obtains

“
2kn(x)
“x2

=−(ln/D) kn(x). (6)
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Fig. 2. Sinusoidal signal (dashed curve) and approximated multi-step (p=8) periodic signal
(solid curve) for the full one cycle as a function of time.

Substituting Eq. (5) into the matching conditions Eqs.(2a)–(2f ) one obtains
the following set of conditions for k(x) with the help of multi-step periodic
signal defined in Eq. (3):

k −n(−a(1+k/2))=0, (7a)

e[−|V0|+E]/Dkn(−ka/2−0)=kn(−ka/2+0), (7b)

k −n(−ka/2−0)=k −n(−ka/2+0), (7c)

kn(ka/2−0)=e[−|V0|− E]/Dkn(ka/2+0), (7d)

k −n(ka/2−0)=k −n(ka/2+0), (7e)

kn(xf=a(1+k)/2)=0, (7f )

where E=A.s with s being the corresponding value of sk defined by Eq. (3)
in the appropriate time interval where the conditional probability density is
being decomposed. The solutions of Eq. (6) in each region of the potential
are obtained. They express as

kn(x)=Cn cos{kn[x+a(1+k/2)]}; −a(1+k/2) [ x < −ka/2, (8a)

kn(x)=C (2)n sin(knx)+C −(2)n cos(knx); −ka/2 < x < ka/2, (8b)

kn(x)=C (3)n sin(knx)+C −(3)n cos(knx); ka/2 < x [ xf, (8c)
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where C (2)n , C −(2)n , C (3)n and C −(3)n are given by

C (2)n =−Cn[(b/a) cos(kna) sin(knka/2)

+sin(kna) cos(knka/2)], (9a)

C −(2)n =Cn[(b/a) cos(kna) cos(knka/2)

− sin(kna) sin(knka/2)], (9b)

C (3)n =Cn[b2 cos(kna) sin(knka/2) cos(knka)

− sin(kna) cos(knka/2) cos(knka)

−2ab sin(kna) sin2(knka/2) cos(knka/2)

−2(b/a) cos(kna) cos2(knka/2) sin(knka/2)], (9c)

C −(3)n =Cn[b2 cos(kna) cos(knka/2) cos(knka)

+sin(kna) sin(knka/2) cos(knka)

−2ab sin(kna) cos2(knka/2) sin(knka/2)

+2(b/a) cos(kna) sin2(knka/2) cos(knka/2)], (9d)

where k2n=ln/D, a=e |V0|/D, b=eE/D, and the constant Cn is determined
from the normalisation condition

C2n F
xf

−a(1+k/2)
k2n(x) dx=1. (10)

The corresponding eigenvalues are determined from the transcendental
equation

L(a)+L(b)=0, (11)

where L(a) and L(b) are given by

L(a)=cos(knka) cos{kn[xf+a(1−k/2)]}

−a sin(knka) sin(kna) cos{kn(xf−ka/2)}

−(1/a) sin(knka) cos(kna) sin{kn(xf−ka/2)}, (12a)

L(b)=(b−1) cos(knka) cos(kna) cos{kn(xf−ka/2)}

+(1−b−1) cos(knka) sin(kna) sin{kn(xf−ka/2)}. (12b)
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The conditional probability density function in any time interval, say l,
can then be calculated from the previous history by convoluting it in each
previous intervals:

p(xl, tl | x1, t1)=F · · ·F dxl−1 dxl−2 · · · dx2 D
l

j=2
p(xj, tj | xj−1, tj−1). (13)

The survival probability at time t , S(t | t0;−xf) can be obtained as

S(t | t0;−xf)=F
xf

−a(1+k/2)
p(x, t | −xf, t0) dx, (14)

and the first passage time density function (FPTDF) g(t | t0) is obtained
from S(t | t0;−xf) as

g(t | t0)=−
dS(t | t0;−xf)

dt
. (15)

Physically, g(t | t0) dt gives the probability that the particle reaches x=xf
for the first time in the time interval t and t+dt starting from x=−xf at
t=t0. Different moments of g(t | t0) can be readily calculated from the
normalised g(t | t0) as

O(t− t0) jP=F
.

t0
(t− t0) j g(t | t0) dt; j=1, 2,... . (16)

It is to be noted that as the matching conditions are changing with
time through the value of s, the probability density function would not
be homogeneous in time. It would depend explicitly on initial time t0.
In experiment, however, it is difficult to control the initial time t0. One
therefore should take the average of the probability distribution function
with respect to initial time t0. If t0 is chosen with uniform probability over
the signal period T0, we would get the average conditional probability dis-
tribution function as

Op(x, y | −xf)P=
1
T0

F
T0

0
dt0 p(x, t0+y | −xf, t0). (17)

With this average value of the conditional probability various moments can
similarly be calculated.
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It is then quite straight-forward to calculate the survival probability at
any time interval of any cycle. We will write down the final formulae:

Si, k(t | xi; t0)=Cni, k ×Ok(kni, k )× exp[−lni, k (t−2(i−1)gt)],

; 52(i−1)+
k−1
2p+1
6gt < t [ 52(i−1)+

k
2p+1
6gt,

; k=1, 2,..., 2(2p+1), (18)

where

Cni, k=F
xf

−a(1+k/2)
dx kni, k (x), (19)

and the functions Ok are generated through the recursion relations:

O1(kn(i+1), 1 )=Fi+1(kn(i+1), 1 ), (20a)

Ok(kni, k )=Okni, k | kni, (k−1)P× exp 5(k−1)gt
2p+1

(lni, k −lni, (k−1) )6

×Ok−1(kni, (k−1) ),

; k=2, 3,..., 2(2p+1), (20b)

Fi+1(kn(i+1), 1 )=Okn(i+1), 1 | kni, 2(2p+1)P× exp[−2lni, 2(2p+1)gt]

×O2(2p+1)(kni, 2(2p+1) ), (20c)

with the definition ni, k — n2(2p+1)(i−1)+k and Ol(kn1, l )=kn1, l (xi).e
ln1, l

t0 for
(l−1)gt/(2p+1) [ t0 [ lgt/(2p+1); l=1, 2,..., 2(2p+1). The angular
bracket in any equation implies dot product of the corresponding func-
tions, for, e.g.,

Okni, k | knj, lP=F
xf

−a(1+k/2)
dx kni, k (x).knj, l (x). (21)

The cycle variable i runs over positive integers; i.e., i=1, 2, 3,.... In all
these expressions, viz., Eqs. (18)–(20), any running subscript appeared more
than once, the summation over that is implied. The summation corre-
sponds to the summation over the eigenvalues as in spectral decomposition
of conditional probability. The effect of history is explicit in the expressions
for survival probabilities. Once the survival probability S(t | xi; t0) is
obtained from these formluae, the FPTDF, MFPT and the corresponding
variance are obtained by employing Eqs. (15) and (16). Evaluation of
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MFPT and other relevant quantities requires sum of infinite series which
must be truncated in order to obtain a final result. Convergence of MFPT
is ensured by gradually increasing the number of terms (i.e., number of
eigenvalues) for the calculation. The process is truncated when MFPT does
not change upto two decimal point of accuracy with the change of number
of terms.

3. RESULTS AND DISCUSSIONS

The calculations are done with the potential parameters a=4, k=2,
|V0 |=0.25, A=0.2 and 0.4. We have chosen these two representative
amplitudes (A=0.2 and 0.4) since in this general formalism (arbitrary
amplitude) they represent one case with low amplitude (A=0.2) and the
other with high amplitude (A=0.4) compared to the depth |V0 | of the
potential well. The sinusoidal signal is approximated with p=8 (17 steps in
one half cycle) [Eq. (3)] multistep periodic signal in our calculation. The
particle is assumed to start at t0=0 from the initial point xi=−6 (mid
point of the left well) and ends its journey at xf=6 (mid point of the right
well). Normalized FPTDF g(t) — g(t | 0) as a function of t/T0 for a fixed
value of the signal frequency W=0.2, amplitude A=0.4 and different
values of D/|V0 | are plotted in Fig. 3. The results of the calculation with
A=0.2 are not shown here as the features are similar to those for the high
amplitude (A=0.4) case. The results with the low amplitude case also con-
firms our previous results (18) obtained through an asymptotic expansion of
probability distribution function. In Fig. 3 multiple peaks are observed for
small values of the noise strength and as noise strength increases, the
background over which the peaks occur also increases.The peak heights fall
exponentially with time for fixed D/|V0 | and for small noise strengths they
take larger values. Successive peaks are separated by a time interval exactly
equal to the period of the signal T0 showing that the probability of transi-
tion is maximum after each period. At these particular times the synchro-
nization between the deterministic periodic force and the random noise is
maximum helping the particle to reach the terminating point at the right
well by overcoming the barrier. Peak areas are also found to be decreasing
with time. The peak areas are a good measure of the synchronization (18)

and directly gives the probability of transition within the time interval.
We calculate the peak areas by integrating around the nth peak after

subtracting the background (Pn=> g(t) dt). The peak areas are plotted as a
function of D/|V0 | in Fig. 4. The figure demonstrates a non-monotonous
behaviour for each peak exhibiting a signature of maximum cooperation or
synchronization between the noise and the external frequency at specific
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Fig. 3. FPTDF g(t) as a function of t/T0 for frequency W=0.2 and D/|V0 |=10.20, 11.20,
12.0 for amplitude A=0.4.

Fig. 4. Peak areas as a function of D/|V0 | for W=0.2 and A=0.4.
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values of noise strength for a particular signal frequency. Also the degree of
synchronization is gradually lesser for second, third etc. peaks respectively.

In a similar manner, for a fixed D/|V0 |=10.20, amplitude A=0.4,
the normalized FPTDF g(t) are plotted for different signal frequencies
in Fig. 5. It also shows similar behavior like already discussed (Fig. 3).
The area of the first and the most dominant peak (integrated after back-
ground subtraction) is plotted as a function of the signal frequency in
Fig. 6. It also exhibits a similar non-monotonous behaviour and shows
that synchronization is maximum at a particular signal frequency for a
given D/|V0 |. This is so called resonant behaviour and the specific values
of the noise strengths and the signal frequencies are denoted by Dres and
Wres respectively.

Three dimensional plots of dominant peak areas P1 as a function of
noise strength D and frequency W for different amplitudes A=0.4 (larger
than the depth of the unperturbed potential) and A=0.2 (smaller than the
depth of the unperturbed potential) are given in Fig. 7. These would dem-
onstrate the global view. This figure represents the fitted surface from the
calculated peak areas for different frequencies and noise strengths. The
maximum peak areas correspond to maximum synchronization between

Fig. 5. FPTDF g(t) as function of time t/T0 for D/|V0 |=10.20 and W=0.14, 0.18, 0.20.
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Fig. 6. Peak area as a function of W for D/|V0 |=10.20 and A=0.4.

noise and periodic signal and referred to as resonance condition. The
typical sections for given frequency and for given noise strength of this
three dimensional plot are shown in Figs. 4 and 6 respectively. In order to
demonstrate the nonmonotonous behavior of peak areas P1 versus noise
strength D for given frequency and that against frequency W for given noise
strength we make suitable cuts along frequency and noise strength axes of
Fig. 7a and draw the three dimensional plot Fig. 7b for amplitude A=0.4.
Similar figure could be obtained for amplitude A=0.2.

As MFPT is a very important time scale in the noise induced transi-
tion, we evaluate MFPT averaged over initial time at resonance using
Eqs. (16) and (17) and plot as a function of noise strength for both high
(A=0.4) and low (A=0.2) amplitudes in Fig. 8. These curves are
compared with the MFPT vs. noise strength curve when there is no signal
in the same figure. The curves show that the MFPT is more for resonance
case than that for no-bias case. As amplitude A corresponds to the strength
of the signal, for given noise strength D, it is expected that the frequency of
occurance of the maximum strength (size of the signal) would be more for
low amplitude than that for high amplitude to combat the strength of the
noise for resonance to occur. As amplitude increases, the MFPT to reach
the right well is found to decrease as expected. The interesting point to note
that at resonance for high amplitude (A=0.4) the MFPT decreases linearly
with the noise strength while for low amplitude (A=0.2) the MFPT
increases linearly with the inverse of the noise strength.
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Fig. 7. (a) Peak areas P1 as a function of frequency W and noise strength D for signal
amplitude A=0.4. (b) Peak areas P1 as a function of frequency W and noise strength D with
suitable cuts along D and W axes (see the text) for signal amplitude A=0.4. (c) Peak areas P1
as a function of frequency W and noise strength D for signal amplitude A=0.2.
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Fig. 8. MFPT at resonance OtPres as a function of strength of the noise D with signal
(A=0.4) [line with filled triangles], (A=0.2) [line with filled squares], and without signal
(A=0) [line with filled circles].

Fig. 9. Noise strength at resonance Dres as a function of frequency W for A=0.2 [line with
filled squares] and A=0.4 [line with filled circles].
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We have seen that the synchronization is maximum for specific noise
strengths for different signal frequencies and vice versa. The values of the
noise strengths at resonance (Dres) are plotted as a function of the signal
frequency W in Fig. 9 for two different cases, e.g., A=0.2 and A=0.4.
They show linear behaviour but with different slopes—the one with higher
amplitude is steeper. We fit two straight lines through these points and they
give, Dres=3.77W+1.39 ( for A=0.2) and Dres=4.01W+1.78 (for A=0.4).
This shows that as the frequency of the signal increases, the noise strength
for which the resonance occurs also increases linearly. This could be
understood as follows. Suppose the system is at resonance; the state of
the system is defined by a particular frequency and noise strength (Dres). If
the noise strength is increased maintaining the frequency constant, Fig. 3
suggests that the system becomes in off-resonant condition. The back-
ground area increases and correspondingly the peak area over the back-
ground decreases. In order to drive the system in resonant condition again
with this increased value of noise strength, the background area should be
decreased. This is achieved by increasing the frequency as suggested from
Fig. 5. At resonance, the optimal noise strength is related to the driving
frequency. In symmetric bistable square well, we find that the dependence
is linear. The linear relation between the optimal noise intensity and the
driving frequency is important because this fact might help the experimen-
talists in studying the resonance behaviour in complex systems where
tuning the frequency is a convenient task than varying the internal noise or
temperature.

In conclusion, in this paper we propose a new characterization of the
stochastic resonance in bistable square potential well. Resonance is charac-
terized as a linear relation between noise strength at resonance and the
frequency of the periodic signal. This characterization is shown to hold
good for amplitudes lesser or greater than the depth of the unmodulated
potential well. Although we found this characterization for bistable square
potential well for the sake of analytic treatment of the process for arbitrary
amplitudes, we believe this simple linear relationship would hold good for
general bistable potential as well.
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